Software:系统源码Android5.1
Camera3研读前沿:
当初在研读Camera1.0相关的内容时,主要围绕着CameraClient、CameraHardwareInterface等方面进行工作的开展,无论是数据流还是控制流看起来都很简单、明了,一系列的流程化操作使得整个框架学起来特别的容易。因为没有Camera2.0相关的基础,所以这次直接看3.0相关的源码时,显得十分的吃紧,再加上底层高通HAL3.0实现的过程也是相当的复杂,都给整个研读过程带来了很多的困难。可以说,自身目前对Camera3.0框架的熟悉度也大概只有70%左右,希望通过总结来进一步梳理他的工作原理与整个框架,并进一步熟悉与加深理解。
1.Camera3下的整体架构图。
整个CameraService建立起一个可用操作底层Camera device大致需要经过Camera2Client、Camera3Device以及HAL层的camera3_device_t三个部分。
从上图中可以发现Camera3架构看上去明显比camera1来的复杂,但他更加的模块化。对比起Android4.2.2 Camer系统架构图(HAL和回调处理)一文中描述的单顺序执行流程,Camera3将更多的工作集中在了Framework去完成,将更多的控制权掌握在自己的手里,从而与HAL的交互的数据信息更少,也进一步减轻了一些在旧版本中HAL层所需要做的事情。
2. Camera2Client的建立与初始化过程
在建立好Camera2Client后会进行initialize操作,完成各个处理模块的创建:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
.... mStreamingProcessor = new StreamingProcessor(this);//preview和recorder threadName = String8::format("C2-%d-StreamProc", mCameraId); mStreamingProcessor->run(threadName.string());//预览与录像 mFrameProcessor = new FrameProcessor(mDevice, this);// 3A threadName = String8::format("C2-%d-FrameProc", mCameraId); mFrameProcessor->run(threadName.string()); //3A mCaptureSequencer = new CaptureSequencer(this); threadName = String8::format("C2-%d-CaptureSeq", mCameraId); mCaptureSequencer->run(threadName.string());//录像,拍照 mJpegProcessor = new JpegProcessor(this, mCaptureSequencer); threadName = String8::format("C2-%d-JpegProc", mCameraId); mJpegProcessor->run(threadName.string()); .... mCallbackProcessor = new CallbackProcessor(this);//回调处理 threadName = String8::format("C2-%d-CallbkProc", mCameraId); mCallbackProcessor->run(threadName.string()); |
依次分别创建了:StreamingProcessor并启动一个他所属的thread,该模块主要负责处理previews与record两种视频流的处理,用于从hal层获取原始的视频数据
FrameProcessor并启动一个thread,该模块专门用于处理回调回来的每一帧的3A等信息,即每一帧视频除去原始视频数据外,还应该有其他附加的数据信息,如3A值。
CaptureSequencer并启动一个thread,该模块需要和其他模块配合使用,主要用于向APP层告知capture到的picture。
JpegProcessor并启动一个thread,该模块和streamprocessor类似,他启动一个拍照流,一般用于从HAL层获取jpeg编码后的图像照片数据。
此外ZslProcessor模块称之为0秒快拍,其本质是直接从原始的Preview流中获取预存着的最近的几帧,直接编码后返回给APP,而不需要再经过take picture去请求获取jpeg数据。0秒快拍技术得意于当下处理器CSI2 MIPI性能的提升以及Sensor支持全像素高帧率的实时输出。一般手机拍照在按下快门后都会有一定的延时,是因为需要切换底层Camera以及ISP等的工作模式,并重新设置参数以及重新对焦等等,都需要花一定时间后才抓取一帧用于编码为jpeg图像。
以上5个模块整合在一起基本上实现了Camera应用开发所需的基本业务功能。
3. 预览Preview下的控制流
研读Camera具体的业务处理功能,一般从视频实时预览Preview入手。一般熟悉Camera架构的人,可以从一个app端的一个api一直连续打通到底层hal的一个控制命令。大致可以如下图所示:
对于preview部分到CameraService的控制流可以参考博文Android4.2.2的preview的数据流和控制流以及最终的预览显示,本文将直接从Camera2Client::startPreview() 作为入口来分析整个Framework层中Preview相关的数据流。
1 2 3 4 5 6 7 8 9 |
status_t Camera2Client::startPreview() { ATRACE_CALL(); ALOGV("%s: E", __FUNCTION__); Mutex::Autolock icl(mBinderSerializationLock); status_t res; if ( (res = checkPid(__FUNCTION__) ) != OK) return res; SharedParameters::Lock l(mParameters); return startPreviewL(l.mParameters, false); } |
startPreview通过startPreviewL提取参数后真正的开始执行Preview相关的控制流。该函数看上去内容虽然较多,但基本采用了同一种处理方式:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
status_t Camera2Client::startPreviewL(Parameters ¶ms, bool restart) {//restart == false ATRACE_CALL(); status_t res; ...... int lastPreviewStreamId = mStreamingProcessor->getPreviewStreamId();//获取上一层Preview stream id res = mStreamingProcessor->updatePreviewStream(params);//创建camera3device stream, Camera3OutputStream ..... int lastJpegStreamId = mJpegProcessor->getStreamId(); res = updateProcessorStream(mJpegProcessor, params);//预览启动时就建立一个jpeg的outstream ..... res = mCallbackProcessor->updateStream(params);//回调处理建立一个Camera3outputstream if (res != OK) { ALOGE("%s: Camera %d: Unable to update callback stream: %s (%d)", __FUNCTION__, mCameraId, strerror(-res), res); return res; } outputStreams.push(getCallbackStreamId()); ...... outputStreams.push(getPreviewStreamId());//预览stream ...... if (!params.recordingHint) { if (!restart) { res = mStreamingProcessor->updatePreviewRequest(params);//request处理,更新了mPreviewrequest if (res != OK) { ALOGE("%s: Camera %d: Can't set up preview request: " "%s (%d)", __FUNCTION__, mCameraId, strerror(-res), res); return res; } } res = mStreamingProcessor->startStream(StreamingProcessor::PREVIEW, outputStreams);//启动stream,传入outputStreams即stream 的id } else { if (!restart) { res = mStreamingProcessor->updateRecordingRequest(params); if (res != OK) { ALOGE("%s: Camera %d: Can't set up preview request with " "record hint: %s (%d)", __FUNCTION__, mCameraId, strerror(-res), res); return res; } } res = mStreamingProcessor->startStream(StreamingProcessor::RECORD, outputStreams); } ...... } |
(1). mStreamingProcessor->updatePreviewStream()
由预览与录像处理模块更新一个预览流,其实现过程如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
status_t StreamingProcessor::updatePreviewStream(const Parameters ¶ms) { ATRACE_CALL(); Mutex::Autolock m(mMutex); status_t res; sp<CameraDeviceBase> device = mDevice.promote();//Camera3Device if (device == 0) { ALOGE("%s: Camera %d: Device does not exist", __FUNCTION__, mId); return INVALID_OPERATION; } if (mPreviewStreamId != NO_STREAM) { // Check if stream parameters have to change uint32_t currentWidth, currentHeight; res = device->getStreamInfo(mPreviewStreamId, ¤tWidth, ¤tHeight, 0); if (res != OK) { ALOGE("%s: Camera %d: Error querying preview stream info: " "%s (%d)", __FUNCTION__, mId, strerror(-res), res); return res; } if (currentWidth != (uint32_t)params.previewWidth || currentHeight != (uint32_t)params.previewHeight) { ALOGV("%s: Camera %d: Preview size switch: %d x %d -> %d x %d", __FUNCTION__, mId, currentWidth, currentHeight, params.previewWidth, params.previewHeight); res = device->waitUntilDrained(); if (res != OK) { ALOGE("%s: Camera %d: Error waiting for preview to drain: " "%s (%d)", __FUNCTION__, mId, strerror(-res), res); return res; } res = device->deleteStream(mPreviewStreamId); if (res != OK) { ALOGE("%s: Camera %d: Unable to delete old output stream " "for preview: %s (%d)", __FUNCTION__, mId, strerror(-res), res); return res; } mPreviewStreamId = NO_STREAM; } } if (mPreviewStreamId == NO_STREAM) {//首次create stream res = device->createStream(mPreviewWindow, params.previewWidth, params.previewHeight, CAMERA2_HAL_PIXEL_FORMAT_OPAQUE, &mPreviewStreamId);//创建一个Camera3OutputStream if (res != OK) { ALOGE("%s: Camera %d: Unable to create preview stream: %s (%d)", __FUNCTION__, mId, strerror(-res), res); return res; } } res = device->setStreamTransform(mPreviewStreamId, params.previewTransform); if (res != OK) { ALOGE("%s: Camera %d: Unable to set preview stream transform: " "%s (%d)", __FUNCTION__, mId, strerror(-res), res); return res; } return OK; } |
该函数首先是查看当前StreamingProcessor模块下是否存在Stream,没有的话,则交由Camera3Device创建一个stream。显然,一个StreamingProcessor只能拥有一个PreviewStream,而一个Camera3Device显然控制着所有的Stream。
注意:在Camera2Client中,Stream大行其道,5大模块的数据交互均以stream作为基础。
下面我们来重点关注Camera3Device的接口createStream,他是5个模块创建stream的基础:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
status_t Camera3Device::createStream(sp<ANativeWindow> consumer, uint32_t width, uint32_t height, int format, int *id) { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); ALOGV("Camera %d: Creating new stream %d: %d x %d, format %d", mId, mNextStreamId, width, height, format); status_t res; bool wasActive = false; switch (mStatus) { case STATUS_ERROR: CLOGE("Device has encountered a serious error"); return INVALID_OPERATION; case STATUS_UNINITIALIZED: CLOGE("Device not initialized"); return INVALID_OPERATION; case STATUS_UNCONFIGURED: case STATUS_CONFIGURED: // OK break; case STATUS_ACTIVE: ALOGV("%s: Stopping activity to reconfigure streams", __FUNCTION__); res = internalPauseAndWaitLocked(); if (res != OK) { SET_ERR_L("Can't pause captures to reconfigure streams!"); return res; } wasActive = true; break; default: SET_ERR_L("Unexpected status: %d", mStatus); return INVALID_OPERATION; } assert(mStatus != STATUS_ACTIVE); sp<Camera3OutputStream> newStream; if (format == HAL_PIXEL_FORMAT_BLOB) {//图片 ssize_t jpegBufferSize = getJpegBufferSize(width, height); if (jpegBufferSize <= 0) { SET_ERR_L("Invalid jpeg buffer size %zd", jpegBufferSize); return BAD_VALUE; } newStream = new Camera3OutputStream(mNextStreamId, consumer, width, height, jpegBufferSize, format);//jpeg 缓存的大小 } else { newStream = new Camera3OutputStream(mNextStreamId, consumer, width, height, format);//Camera3OutputStream } newStream->setStatusTracker(mStatusTracker); res = mOutputStreams.add(mNextStreamId, newStream);//一个streamid与Camera3OutputStream绑定 if (res < 0) { SET_ERR_L("Can't add new stream to set: %s (%d)", strerror(-res), res); return res; } *id = mNextStreamId++;//至少一个previewstream 一般还有CallbackStream mNeedConfig = true; // Continue captures if active at start if (wasActive) { ALOGV("%s: Restarting activity to reconfigure streams", __FUNCTION__); res = configureStreamsLocked(); if (res != OK) { CLOGE("Can't reconfigure device for new stream %d: %s (%d)", mNextStreamId, strerror(-res), res); return res; } internalResumeLocked(); } ALOGV("Camera %d: Created new stream", mId); return OK; } |
该函数重点是关注一个new Camera3OutputStream,在Camera3Device主要存在Camera3OutputStream和Camera3InputStream
两种stream,前者主要作为HAL的输出,是请求HAL填充数据的OutPutStream,后者是由Framework将Stream进行填充。无论是Preview、record还是capture均是从HAL层获取数据,故都会以OutPutStream的形式存在,是我们关注的重点,后面在描述Preview的数据流时还会进一步的阐述。每当创建一个OutPutStream后,相关的stream信息被push维护在一个mOutputStreams的KeyedVector<int, sp<camera3::Camera3OutputStreamInterface> >表中,分别是该stream在Camera3Device中创建时的ID以及Camera3OutputStream的sp值。同时对mNextStreamId记录下一个Stream的ID号。
上述过程完成StreamingProcessor模块中一个PreviewStream的创建,其中Camera3OutputStream创建时的ID值被返回记录作为mPreviewStreamId的值,此外每个Stream都会有一个对应的ANativeWindow,这里称之为Consumer。
(2)mCallbackProcessor->updateStream(params)
对比StreamingProcessor模块创建previewstream的过程,很容易定位到Callback模块是需要建立一个callback流,同样需要创建一个Camera3OutputStream来接收HAL返回的每一帧帧数据,是否需要callback可以通过callbackenable来控制。一般但预览阶段可能不需要回调每一帧的数据到APP,但涉及到相应的其他业务如视频处理时,就需要进行callback的enable。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
status_t CallbackProcessor::updateStream(const Parameters ¶ms) { ATRACE_CALL(); status_t res; Mutex::Autolock l(mInputMutex); sp<CameraDeviceBase> device = mDevice.promote(); if (device == 0) { ALOGE("%s: Camera %d: Device does not exist", __FUNCTION__, mId); return INVALID_OPERATION; } // If possible, use the flexible YUV format int32_t callbackFormat = params.previewFormat; if (mCallbackToApp) { // TODO: etalvala: This should use the flexible YUV format as well, but // need to reconcile HAL2/HAL3 requirements. callbackFormat = HAL_PIXEL_FORMAT_YV12; } else if(params.fastInfo.useFlexibleYuv && (params.previewFormat == HAL_PIXEL_FORMAT_YCrCb_420_SP || params.previewFormat == HAL_PIXEL_FORMAT_YV12) ) { callbackFormat = HAL_PIXEL_FORMAT_YCbCr_420_888; } if (!mCallbackToApp && mCallbackConsumer == 0) { // Create CPU buffer queue endpoint, since app hasn't given us one // Make it async to avoid disconnect deadlocks sp<IGraphicBufferProducer> producer; sp<IGraphicBufferConsumer> consumer; BufferQueue::createBufferQueue(&producer, &consumer);//BufferQueueProducer与BufferQueueConsumer mCallbackConsumer = new CpuConsumer(consumer, kCallbackHeapCount); mCallbackConsumer->setFrameAvailableListener(this);//当前CallbackProcessor继承于CpuConsumer::FrameAvailableListener mCallbackConsumer->setName(String8("Camera2Client::CallbackConsumer")); mCallbackWindow = new Surface(producer);//用于queue操作,这里直接进行本地的buffer操作 } if (mCallbackStreamId != NO_STREAM) { // Check if stream parameters have to change uint32_t currentWidth, currentHeight, currentFormat; res = device->getStreamInfo(mCallbackStreamId, ¤tWidth, ¤tHeight, ¤tFormat); if (res != OK) { ALOGE("%s: Camera %d: Error querying callback output stream info: " "%s (%d)", __FUNCTION__, mId, strerror(-res), res); return res; } if (currentWidth != (uint32_t)params.previewWidth || currentHeight != (uint32_t)params.previewHeight || currentFormat != (uint32_t)callbackFormat) { // Since size should only change while preview is not running, // assuming that all existing use of old callback stream is // completed. ALOGV("%s: Camera %d: Deleting stream %d since the buffer " "parameters changed", __FUNCTION__, mId, mCallbackStreamId); res = device->deleteStream(mCallbackStreamId); if (res != OK) { ALOGE("%s: Camera %d: Unable to delete old output stream " "for callbacks: %s (%d)", __FUNCTION__, mId, strerror(-res), res); return res; } mCallbackStreamId = NO_STREAM; } } if (mCallbackStreamId == NO_STREAM) { ALOGV("Creating callback stream: %d x %d, format 0x%x, API format 0x%x", params.previewWidth, params.previewHeight, callbackFormat, params.previewFormat); res = device->createStream(mCallbackWindow, params.previewWidth, params.previewHeight, callbackFormat, &mCallbackStreamId);//Creating callback stream if (res != OK) { ALOGE("%s: Camera %d: Can't create output stream for callbacks: " "%s (%d)", __FUNCTION__, mId, strerror(-res), res); return res; } } return OK; } |
对比updatePreviewStream可以发现,该函数自助创建了一套surface/BufferQueue/CpuConsumer的机制,这套类似SurfaceFlinger的buffer管理机制可参看一文Android5.1中surface生产者和消费者间的处理框架简述。此外通过createStream请求Camera3Device建立一个Stream,其中Stream的ID值保存在mCallBackStreamId当中,并将一个CallbackWindow和当前的Stream绑定。通过这个对比,也需要重点关注到,对于每个Camera3OutPutStream来说,每一个stream都被一个Consumer,而在此处都是Surface(ANativeWindow)所拥有,这个Consumer和HAL相匹配来说是消费者,但对于真正的处理Buffer的Consumer来说如CPUConsumer,Surface却又是以一个Product的角色存在的。
(3)updateProcessorStream(mJpegProcessor, params)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
status_t Camera2Client::updateProcessorStream(sp<ProcessorT> processor, camera2::Parameters params) { // No default template arguments until C++11, so we need this overload return updateProcessorStream<ProcessorT, &ProcessorT::updateStream>( processor, params); } template <typename ProcessorT, status_t (ProcessorT::*updateStreamF)(const Parameters &)> status_t Camera2Client::updateProcessorStream(sp<ProcessorT> processor, Parameters params) { status_t res; // Get raw pointer since sp<T> doesn't have operator->* ProcessorT *processorPtr = processor.get(); res = (processorPtr->*updateStreamF)(params); ....... } |
该模板函数处理过程最终通过非显示实例到显示实例调用JpegProcessor::updateStream,该函数处理的逻辑基本和Callback模块处理一致,创建的一个OutPutStream和CaptureWindow相互绑定,同时Stream的ID保存在mCaptureStreamId中。
此外需要说明一点:
在preview模式下,就去创建一个jpeg处理的stream,目的在于启动takepicture时,可以更快的进行capture操作。是通过牺牲内存空间来提升效率。
(4)整合startPreviewL中所有的stream 到Vector<int32_t> outputStreams
outputStreams.push(getPreviewStreamId());//预览stream
outputStreams.push(getCallbackStreamId())//Callback stream
目前一次Preview构建的stream数目至少为两个。
(5)mStreamingProcessor->updatePreviewRequest()
在创建好多路stream后,由StreamingProcessor模块来将所有的stream信息交由Camera3Device去打包成Request请求。
注意:
Camera HAL2/3的特点是:将所有stream的请求都转化为几个典型的Request请求,而这些Request需要由HAL去解析,进而处理所需的业务。这也是Camera3数据处理复杂化的原因所在。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
status_t StreamingProcessor::updatePreviewRequest(const Parameters ¶ms) { ATRACE_CALL(); status_t res; sp<CameraDeviceBase> device = mDevice.promote(); if (device == 0) { ALOGE("%s: Camera %d: Device does not exist", __FUNCTION__, mId); return INVALID_OPERATION; } Mutex::Autolock m(mMutex); if (mPreviewRequest.entryCount() == 0) { sp<Camera2Client> client = mClient.promote(); if (client == 0) { ALOGE("%s: Camera %d: Client does not exist", __FUNCTION__, mId); return INVALID_OPERATION; } // Use CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG for ZSL streaming case. if (client->getCameraDeviceVersion() >= CAMERA_DEVICE_API_VERSION_3_0) { if (params.zslMode && !params.recordingHint) { res = device->createDefaultRequest(CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG, &mPreviewRequest); } else { res = device->createDefaultRequest(CAMERA3_TEMPLATE_PREVIEW, &mPreviewRequest); } } else { res = device->createDefaultRequest(CAMERA2_TEMPLATE_PREVIEW, &mPreviewRequest);//创建一个Preview相关的request,由底层的hal来完成default创建 } if (res != OK) { ALOGE("%s: Camera %d: Unable to create default preview request: " "%s (%d)", __FUNCTION__, mId, strerror(-res), res); return res; } } res = params.updateRequest(&mPreviewRequest);//根据参数来更新CameraMetadata request if (res != OK) { ALOGE("%s: Camera %d: Unable to update common entries of preview " "request: %s (%d)", __FUNCTION__, mId, strerror(-res), res); return res; } res = mPreviewRequest.update(ANDROID_REQUEST_ID, &mPreviewRequestId, 1);//mPreviewRequest的ANDROID_REQUEST_ID if (res != OK) { ALOGE("%s: Camera %d: Unable to update request id for preview: %s (%d)", __FUNCTION__, mId, strerror(-res), res); return res; } return OK; } |
该函数的处理过程是一个构建并初始化mPreviewRequest的过程,分以下几个流程来分析:a mPreviewRequest是一个CameraMetadata类型数据,用于封装当前previewRequest。
b device->createDefaultRequest(CAMERA3_TEMPLATE_PREVIEW, &mPreviewRequest)
1 2 3 4 5 6 7 8 9 10 11 12 |
const camera_metadata_t *rawRequest; ATRACE_BEGIN("camera3->construct_default_request_settings"); rawRequest = mHal3Device->ops->construct_default_request_settings( mHal3Device, templateId); ATRACE_END(); if (rawRequest == NULL) { SET_ERR_L("HAL is unable to construct default settings for template %d", templateId); return DEAD_OBJECT; } *request = rawRequest; mRequestTemplateCache[templateId] = rawRequest; |
最终是由hal来实现构建一个rawrequest,即对于Preview,而言是构建了一个CAMERA3_TEMPLATE_PREVIEW类型的Request。其实对HAL而言,rawrequest本质是用于操作一个camera_metadata_t类型的数据:
1 2 3 4 5 6 7 8 9 10 11 12 |
struct camera_metadata { metadata_size_t size; uint32_t version; uint32_t flags; metadata_size_t entry_count; metadata_size_t entry_capacity; metadata_uptrdiff_t entries_start; // Offset from camera_metadata metadata_size_t data_count; metadata_size_t data_capacity; metadata_uptrdiff_t data_start; // Offset from camera_metadata uint8_t reserved[]; }; |
该数据结构可以存储多种数据,且可以根据entry tag的不同类型来存储数据,同时数据量的大小也可以自动调整。c mPreviewRequest.update(ANDROID_REQUEST_ID,&mPreviewRequestId, 1)
将当前的PreviewRequest相应的ID保存到camera metadata。
(6)mStreamingProcessor->startStream启动整个预览的stream流
该函数的处理过程较为复杂,可以说是整个Preview正常工作的核心控制
1 2 3 4 5 6 7 8 9 10 11 |
status_t StreamingProcessor::startStream(StreamType type, const Vector<int32_t> &outputStreams) { ..... CameraMetadata &request = (type == PREVIEW) ? mPreviewRequest : mRecordingRequest;//取preview的CameraMetadata request ....res = request.update( ANDROID_REQUEST_OUTPUT_STREAMS, outputStreams);//CameraMetadata中添加outputStreams res = device->setStreamingRequest(request);//向hal发送request ..... } |
该函数首先是根据当前工作模式来确定StreamingProcessor需要处理的Request,该模块负责Preview和Record两个Request。
以PreviewRequest就是之前createDefaultRequest构建的,这里先是将这个Request所需要操作的Outputstream打包到一个tag叫ANDROID_REQUEST_OUTPUT_STREAMS的entry当中。
a:setStreamingRequest
真正的请求Camera3Device去处理这个带有多路stream的PreviewRequest。
1 2 3 4 5 6 7 8 |
status_t Camera3Device::setStreamingRequest(const CameraMetadata &request, int64_t* /*lastFrameNumber*/) { ATRACE_CALL(); List<const CameraMetadata> requests; requests.push_back(request); return setStreamingRequestList(requests, /*lastFrameNumber*/NULL); } |
该函数将mPreviewRequest push到一个list,调用setStreamingRequestList
1 2 3 4 5 6 |
status_t Camera3Device::setStreamingRequestList(const List<const CameraMetadata> &requests, int64_t *lastFrameNumber) { ATRACE_CALL(); return submitRequestsHelper(requests, /*repeating*/true, lastFrameNumber); } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
status_t Camera3Device::submitRequestsHelper( const List<const CameraMetadata> &requests, bool repeating, /*out*/ int64_t *lastFrameNumber) {//repeating = 1;lastFrameNumber = NULL ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); status_t res = checkStatusOkToCaptureLocked(); if (res != OK) { // error logged by previous call return res; } RequestList requestList; res = convertMetadataListToRequestListLocked(requests, /*out*/&requestList);//返回的是CaptureRequest RequestList if (res != OK) { // error logged by previous call return res; } if (repeating) { res = mRequestThread->setRepeatingRequests(requestList, lastFrameNumber);//重复的request存入到RequestThread } else { res = mRequestThread->queueRequestList(requestList, lastFrameNumber);//capture模式,拍照单词 } if (res == OK) { waitUntilStateThenRelock(/*active*/true, kActiveTimeout); if (res != OK) { SET_ERR_L("Can't transition to active in %f seconds!", kActiveTimeout/1e9); } ALOGV("Camera %d: Capture request %" PRId32 " enqueued", mId, (*(requestList.begin()))->mResultExtras.requestId); } else { CLOGE("Cannot queue request. Impossible."); return BAD_VALUE; } return res; } |
b convertMetadataListToRequestListLocked这个函数是需要将Requestlist中保存的CameraMetadata数据转换为List<sp<CaptureRequest> >
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
status_t Camera3Device::convertMetadataListToRequestListLocked( const List<const CameraMetadata> &metadataList, RequestList *requestList) { if (requestList == NULL) { CLOGE("requestList cannot be NULL."); return BAD_VALUE; } int32_t burstId = 0; for (List<const CameraMetadata>::const_iterator it = metadataList.begin();//CameraMetadata, mPreviewRequest it != metadataList.end(); ++it) { sp<CaptureRequest> newRequest = setUpRequestLocked(*it);//新建CaptureRequest由CameraMetadata转化而来 if (newRequest == 0) { CLOGE("Can't create capture request"); return BAD_VALUE; } // Setup burst Id and request Id newRequest->mResultExtras.burstId = burstId++; if (it->exists(ANDROID_REQUEST_ID)) { if (it->find(ANDROID_REQUEST_ID).count == 0) { CLOGE("RequestID entry exists; but must not be empty in metadata"); return BAD_VALUE; } newRequest->mResultExtras.requestId = it->find(ANDROID_REQUEST_ID).data.i32[0];//设置该request对应的id } else { CLOGE("RequestID does not exist in metadata"); return BAD_VALUE; } requestList->push_back(newRequest); ALOGV("%s: requestId = %" PRId32, __FUNCTION__, newRequest->mResultExtras.requestId); } return OK; } |
这里是对List<const CameraMetadata>进行迭代解析处理,如当前模式下仅存在PreviewRequest这一个CameraMetadata,通过setUpRequestLocked将其转换为一个CaptureRequest。c 重点来关注setUpRequestLocked复杂的处理过程
1 2 3 4 5 6 7 8 9 10 |
sp<Camera3Device::CaptureRequest> Camera3Device::setUpRequestLocked( const CameraMetadata &request) {//mPreviewRequest status_t res; if (mStatus == STATUS_UNCONFIGURED || mNeedConfig) { res = configureStreamsLocked(); ...... sp<CaptureRequest> newRequest = createCaptureRequest(request);//CameraMetadata转为CaptureRequest,包含mOutputStreams return newRequest; } |
configureStreamsLocked函数主要是将Camera3Device侧建立的所有Stream包括Output与InPut格式的交由HAL3层的Device去实现处理的核心接口是configure_streams与register_stream_buffer。该部分内容会涉及到更多的数据流,详细的处理过程会放在下一博文中进行分析。
createCaptureRequest函数是将一个CameraMetadata格式的数据如PreviewRequest转换为一个CaptureRequest:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
sp<Camera3Device::CaptureRequest> Camera3Device::createCaptureRequest( const CameraMetadata &request) {//mPreviewRequest ATRACE_CALL(); status_t res; sp<CaptureRequest> newRequest = new CaptureRequest; newRequest->mSettings = request;//CameraMetadata camera_metadata_entry_t inputStreams = newRequest->mSettings.find(ANDROID_REQUEST_INPUT_STREAMS); if (inputStreams.count > 0) { if (mInputStream == NULL || mInputStream->getId() != inputStreams.data.i32[0]) { CLOGE("Request references unknown input stream %d", inputStreams.data.u8[0]); return NULL; } // Lazy completion of stream configuration (allocation/registration) // on first use if (mInputStream->isConfiguring()) { res = mInputStream->finishConfiguration(mHal3Device); if (res != OK) { SET_ERR_L("Unable to finish configuring input stream %d:" " %s (%d)", mInputStream->getId(), strerror(-res), res); return NULL; } } newRequest->mInputStream = mInputStream; newRequest->mSettings.erase(ANDROID_REQUEST_INPUT_STREAMS); } camera_metadata_entry_t streams = newRequest->mSettings.find(ANDROID_REQUEST_OUTPUT_STREAMS);//读取存储在CameraMetadata的stream id信息 if (streams.count == 0) { CLOGE("Zero output streams specified!"); return NULL; } for (size_t i = 0; i < streams.count; i++) { int idx = mOutputStreams.indexOfKey(streams.data.i32[i]);//Camera3OutputStream的id在mOutputStreams中 if (idx == NAME_NOT_FOUND) { CLOGE("Request references unknown stream %d", streams.data.u8[i]); return NULL; } sp<Camera3OutputStreamInterface> stream = mOutputStreams.editValueAt(idx);//返回的是Camera3OutputStream,preview/callback等stream // Lazy completion of stream configuration (allocation/registration) // on first use if (stream->isConfiguring()) {//STATE_IN_CONFIG或者STATE_IN_RECONFIG res = stream->finishConfiguration(mHal3Device);//register_stream_buffer, STATE_CONFIGURED if (res != OK) { SET_ERR_L("Unable to finish configuring stream %d: %s (%d)", stream->getId(), strerror(-res), res); return NULL; } } newRequest->mOutputStreams.push(stream);//Camera3OutputStream添加到CaptureRequest的mOutputStreams } newRequest->mSettings.erase(ANDROID_REQUEST_OUTPUT_STREAMS); return newRequest; } |
该函数主要处理指定的这个CameraMetadata mPreviewRequest下对应所拥有的Output与Input Stream,对于Preview而言,至少存在OutPutStream包括一路StreamProcessor与一路可选的CallbackProcessor。在构建这个PreviewRequest时,已经将ANDROID_REQUEST_OUTPUT_STREAMS这个Tag进行了初始化,相应的内容为Vector<int32_t> &outputStreams,包含着属于PreviewRequest这个Request所需要的输出stream的ID值,通过这个ID index值,可以遍历到Camera3Device下所createstream创造的Camera3OutputStream,即说明不同类型的Request在Camera3Device端存在多个Stream,而每次不同业务下所需要Request的对应的Stream又仅是其中的个别而已。
idx = mOutputStreams.indexOfKey(streams.data.i32[i])是通过属于PreviewRequest中包含的一个stream的ID值来查找到mOutputStreams这个KeyedVector中对应的标定值index。注意:两个索引值不一定是一致的。
mOutputStreams.editValueAt(idx)是获取一个与该ID值(如Previewstream ID、Callback Stream ID等等)相对应的Camera3OutputStream。
在找到了当前Request中所有的Camera3OutputStream后,将其维护在CaptureRequest中
1 2 3 4 5 6 7 8 |
class CaptureRequest : public LightRefBase<CaptureRequest> { public: CameraMetadata mSettings; sp<camera3::Camera3Stream> mInputStream; Vector<sp<camera3::Camera3OutputStreamInterface> > mOutputStreams; CaptureResultExtras mResultExtras; }; |
mSettings是保存CameraMetadata PreviewRequest,vector mOutPutStreams保存着当前Request提取出来的Camera3OutputStream,至此构建了一个CaptureRequest。返回到convertMetadataListToRequestListLocked中,现在已经完成了一个CameraMetadata Request的处理,生产的是一个CaptureRequest。我们将这个ANDROID_REQUEST_ID的ID值,保留在
newRequest->mResultExtras.requestId = it->find(ANDROID_REQUEST_ID).data.i32[0]。
这个值在整个Camera3的架构中,仅存在3大种Request类型,说明了整个和HAL层交互的Request类型是不多的:
预览Request mPreviewRequest: mPreviewRequestId(Camera2Client::kPreviewRequestIdStart),
拍照Request mCaptureRequest:mCaptureId(Camera2Client::kCaptureRequestIdStart),
录像Request mRecordingRequest: mRecordingRequestId(Camera2Client::kRecordingRequestIdStart),
1 2 3 4 5 6 |
static const int32_t kPreviewRequestIdStart = 10000000; static const int32_t kPreviewRequestIdEnd = 20000000; static const int32_t kRecordingRequestIdStart = 20000000; static const int32_t kRecordingRequestIdEnd = 30000000; static const int32_t kCaptureRequestIdStart = 30000000; static const int32_t kCaptureRequestIdEnd = 40000000; |
至此执行requestList->push_back(newRequest)后生成了一个requestList,本质上可以先认为这次仅是含有PreviewRequest相关的内容。d mRequestThread->setRepeatingRequests(requestList)
对于Preview来说,一次Preview后底层硬件就该可以连续的工作,而不需要进行过多的切换,故Framework每次向HAL发送的Request均是一种repeat的操作模式,故调用了一个重复的RequestQueue来循环处理每次的Request。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
status_t Camera3Device::RequestThread::setRepeatingRequests( const RequestList &requests, /*out*/ int64_t *lastFrameNumber) { Mutex::Autolock l(mRequestLock); if (lastFrameNumber != NULL) {//第一次进来为null *lastFrameNumber = mRepeatingLastFrameNumber; } mRepeatingRequests.clear(); mRepeatingRequests.insert(mRepeatingRequests.begin(), requests.begin(), requests.end()); unpauseForNewRequests();//signal request_thread in waitfornextrequest mRepeatingLastFrameNumber = NO_IN_FLIGHT_REPEATING_FRAMES; return OK; } |
将Preview线程提交的Request加入到mRepeatingRequests中后,唤醒RequestThread线程去处理当前新的Request。
(7) RequestThread 请求处理线程
RequestThread::threadLoop()函数主要用于响应并处理新加入到Request队列中的请求。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
bool Camera3Device::RequestThread::threadLoop() { .... sp<CaptureRequest> nextRequest = waitForNextRequest();//返回的是mRepeatingRequests,mPreviewRequest if (nextRequest == NULL) { return true; } // Create request to HAL camera3_capture_request_t request = camera3_capture_request_t();//CaptureRequest转为给HAL3.0的camera3_capture_request_t request.frame_number = nextRequest->mResultExtras.frameNumber;//当前帧号 Vector<camera3_stream_buffer_t> outputBuffers; // Get the request ID, if any int requestId; camera_metadata_entry_t requestIdEntry = nextRequest->mSettings.find(ANDROID_REQUEST_ID); if (requestIdEntry.count > 0) { requestId = requestIdEntry.data.i32[0];//获取requestid,这里是mPreviewRequest的id } else { ALOGW("%s: Did not have android.request.id set in the request", __FUNCTION__); requestId = NAME_NOT_FOUND; } ..... camera3_stream_buffer_t inputBuffer; uint32_t totalNumBuffers = 0; ..... // Submit request and block until ready for next one ATRACE_ASYNC_BEGIN("frame capture", request.frame_number); ATRACE_BEGIN("camera3->process_capture_request"); res = mHal3Device->ops->process_capture_request(mHal3Device, &request);//调用底层的process_capture_request ATRACE_END(); ....... } |
函数主体内容较为复杂,分以下几个部分来说明他的响应逻辑:(7.1) waitForNextRequest()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
Camera3Device::RequestThread::waitForNextRequest() { status_t res; sp<CaptureRequest> nextRequest; // Optimized a bit for the simple steady-state case (single repeating // request), to avoid putting that request in the queue temporarily. Mutex::Autolock l(mRequestLock); while (mRequestQueue.empty()) { if (!mRepeatingRequests.empty()) { // Always atomically enqueue all requests in a repeating request // list. Guarantees a complete in-sequence set of captures to // application. const RequestList &requests = mRepeatingRequests; RequestList::const_iterator firstRequest = requests.begin(); nextRequest = *firstRequest;//取 mRequestQueue.insert(mRequestQueue.end(), ++firstRequest, requests.end());//把当前的mRepeatingRequests插入到mRequestQueue // No need to wait any longer mRepeatingLastFrameNumber = mFrameNumber + requests.size() - 1; break; } res = mRequestSignal.waitRelative(mRequestLock, kRequestTimeout);//等待下一个request if ((mRequestQueue.empty() && mRepeatingRequests.empty()) || exitPending()) { Mutex::Autolock pl(mPauseLock); if (mPaused == false) { ALOGV("%s: RequestThread: Going idle", __FUNCTION__); mPaused = true; // Let the tracker know sp<StatusTracker> statusTracker = mStatusTracker.promote(); if (statusTracker != 0) { statusTracker->markComponentIdle(mStatusId, Fence::NO_FENCE); } } // Stop waiting for now and let thread management happen return NULL; } } if (nextRequest == NULL) { // Don't have a repeating request already in hand, so queue // must have an entry now. RequestList::iterator firstRequest = mRequestQueue.begin(); nextRequest = *firstRequest; mRequestQueue.erase(firstRequest);//取一根mRequestQueue中的CaptureRequest,来自于mRepeatingRequests的next } // In case we've been unpaused by setPaused clearing mDoPause, need to // update internal pause state (capture/setRepeatingRequest unpause // directly). Mutex::Autolock pl(mPauseLock); if (mPaused) { ALOGV("%s: RequestThread: Unpaused", __FUNCTION__); sp<StatusTracker> statusTracker = mStatusTracker.promote(); if (statusTracker != 0) { statusTracker->markComponentActive(mStatusId); } } mPaused = false; // Check if we've reconfigured since last time, and reset the preview // request if so. Can't use 'NULL request == repeat' across configure calls. if (mReconfigured) { mPrevRequest.clear(); mReconfigured = false; } if (nextRequest != NULL) { nextRequest->mResultExtras.frameNumber = mFrameNumber++;//对每一个非空的request需要帧号++ nextRequest->mResultExtras.afTriggerId = mCurrentAfTriggerId; nextRequest->mResultExtras.precaptureTriggerId = mCurrentPreCaptureTriggerId; } return nextRequest; } |
该函数是响应RequestList的核心,通过不断的轮训休眠等待一旦mRepeatingRequests有Request可处理时,就将他内部所有的CaptureRequest加入到mRequestQueue 中去,理论来说每一个CaptureRequest对应着一帧的请求处理,每次响应时可能会出现mRequestQueue包含了多个CaptureRequest。通过nextRequest->mResultExtras.frameNumber = mFrameNumber++表示当前CaptureRequest在处理的一帧图像号。
对于mRepeatingRequests而言,只有其非空,在执行完一次queue操作后,在循环进入执行时,会自动对mRequestQueue进行erase操作,是的mRequestQueue变为empty后再次重新加载mRepeatingRequests中的内容,从而形成一个队repeatRequest的重复响应过程。
(7.2) camera_metadata_entry_t requestIdEntry = nextRequest->mSettings.find(ANDROID_REQUEST_ID);提取该CaptureRequest对应的Request 类型值
(7.3) getBuffer操作
涉及到比较复杂的数据流操作过程的内容见下一博文
(7.4) mHal3Device->ops->process_capture_request(mHal3Device, &request)
这里的request是已经由一个CaptureRequest转换为和HAL3.0交互的camera3_capture_request_t结构。
8 小结
至此已经完成了一次向HAL3.0 Device发送一次完整的Request的请求。从最初Preview启动建立多个OutPutStream,再是将这些Stream打包成一个mPreviewRequest来启动stream,随后将这个Request又转变为一个CaptureRequest,直到转为Capture list后交由RequestThread来处理这些请求。每一次的Request简单可以说是Camera3Device向HAL3.0请求一帧数据,当然每一次Request也可以包含各种控制操作,如AutoFocus等内容,会在后续补充。
到这里从StartPreview的入口开始,直到相应的Request下发到HAL3.0,基本描述了一次完成的控制流的处理。对于较为复杂的数据流本质也是一并合并在这个控制操作中的,但作为Buffer视频缓存流的管理维护将在下一博文进行描述与总结。